Panoramis Nlossaicing and Video Geo registrafion -

Advance Technologjes of Computier Visin

Dr. Jharna Majumdar, Former Sc G DRDO
Dean R \& D, Prof, Dept of CSE
NITTE Meenakshi Institute of Technology
Bangalore - 560064

Image Mosaicing
Process of constructing a single image covering the entire visible area of a scene by merging the overlapped areas in a set of images

In Aerial or Ground Based Image Exploitation System, it is the task of assembling individual frames of a video stream to generate a terrain

Mosaic Image

Mosaicing is a complex task
Images taken at different times

- Change in scene conditions

Camera movement (panning, zooming, rotation, translation, tilting etc.)

Images have translation, rotation, scaling and perspective between them

History of Image Mosaicing

Started 1839 - after the development of photographic process

1903- became more popular after the development of air plane technology by Wright Brothers

To produce large photomaps

Problems

* Tedious and time consuming involving hard manual labor
\& Difficult to maintain as duplication is tough
* Types of transformations between images are limited

The beginning ...

Construction of manual photo mosaic

Aerial mosaic of the San Francisco Bay Area compiled from 500 photographs. Courtesy - Pacific Aerial Surveys, Oakland California
...Scenario today

- Advancement in computer technology
- Availability of large volumes of imagery from multiple sensors
> Development of sophisticated algorithms implementable both in software and hardware

Give rise to fully automatic image mosaicing technology

Defense Applications = Video Surveillance

Generation of knowledge base of an unknown terrain
\square Site monitoring and Activity tracking
\square Change detection
\square Contextual exploitation

Non Defense Applications:
$\square \quad$ Document mosaicing
$\square \quad$ Aligning images from different medical modalities for diagnosis
$\square \quad$ Creation of Virtual Reality environment
Monitoring global land usage using satellite imagery
Planning relief in natural disaster like flood and storm

Examples = Surveillance Application

GENERATION OF KNOWLEDGE BASE OF AN UNKNOWN TERRAIN

COURTSEY: CMU with SARNOFF, USA (1998)

Examples - Site Monitoring

GOURTSEV: DARPA Project on AVS (1999) = Site Monitoring

I Interaction between humans, vehicles and buildings

- Movement of personnel in a delineated area
a Abnormal number of cars in a parking lo \dagger

Examples = Change Detection GOURTSEy : HARRIS GORP. USA

1991 Melbourne, Florida

Melbourne, Florida 1993
\square Identify significant change in a site due to

- New construction
- Bomb damage
- Clearing of a forest
- Construction of roads

Classes Of Mosaics

Planar Mosaics

Generated from a collection of images of a planar scene taken from different points of view

A document mosaic

Panoramic Mosaics

360° horizontal field of view, created by rotating a camera about a vertical axis that passes through the camera optical center
The panoramic image is created by determining the relative displacements between adjacent images and compositing the displaced sequence of images

Mosaic created from panoramic view

Example - Feature based Mosaicing

Courtesy : Masakatsu Kourogi, Muraoka Lab (1999)

Example - Feature based Mosaicing

Courtesy : Peleg (1997)

General Steps

Graphical

Mathematical = Affine Transformation

Feature Extraction

Method using features in segmented image
o Edges
o Corners
o Junctions
o Close connected regions

- Intensity segmentation
- Texture segmentation

Feature points using edge

Input image

After refinement
Total no. of edges
= 13

After linking
Total no. of edges 189

Extraction of salient points

Feature points using corners

Image 1

Image 2

Features in intensity segmented image

Features in texture segmented image

Input image
Image after texture segmentation

2D Transformations

\square Translation
Point $P(x, y)$ can be translated by $d x$ along the x-axis and by dy along the y-axis
The new points $P\left(x^{\prime}, y^{\prime}\right)$ can be written as:

$$
x=x+d x \quad y=y+d y
$$

In Matrix form, this can be written as:

$$
\mathrm{p}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \mathrm{p}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right], \mathrm{T}=\left[\begin{array}{l}
\mathrm{dx} \\
\mathrm{dy}
\end{array}\right]
$$

$$
P^{\prime}=P+T
$$

2D Transformations

\square Scaling

Points $P(x, y)$ can be scaled by $S x$ along the x-axis and by sy along the y-axis

$$
x^{\prime}=\mathrm{SX} . \mathrm{x} \quad y^{\prime}=s y \cdot y
$$

In Matrix form, this can be written as:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s x & 0 \\
0 & s y
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\mathrm{P}^{\prime}=S . P
$$

2D Transformations
\square Rotation
Points $P(x, y)$ can be rotated by an angle θ about the origin
$x^{\prime}=x \cos \theta-y \sin \theta$

$$
y^{\prime}=x \sin \theta+y \cos \theta
$$

In Matrix form, this can be written as:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
P^{\prime}=R . P
$$

Rigid Body Transformation

Composed of a combination of rotation, translation and scale

$$
\binom{x_{2}}{y_{2}}=\binom{t_{x}}{t_{y}}+s\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{1}}{y_{1}}
$$

$(x 2, y 2)$ is the new transformed coordinate of $(x 1, y 1)$
t_{x} and t_{y} translation in x and y direction, θ is rotation and
s is scale factor

Affine Transformation

More general than rigid-body, can tolerate more complex distortions

General 2D Affine transformation

$$
\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

$(x 2, y 2)$ is the new transformed coordinate of $(x 1, y 1)$
Rotation, scale or shear

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Rotation $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \quad$ Scale $\left[\begin{array}{cc}\mathrm{S}_{\mathrm{x}} & 0 \\ 0 & \mathrm{~S}_{\mathrm{y}}\end{array}\right]$ Shear \quad Shear $_{\mathrm{x}}=\left[\begin{array}{ll}1 & \mathrm{a} \\ 0 & 1\end{array}\right], \quad$ Shear $_{\mathrm{y}}=\left[\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right]$

Perspective Transformation

Combines all transformations and has 8 degrees of freedom More general than Affine transformation

General 2D Perspective transformation

$$
x^{\prime}=\left[\begin{array}{cc}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & \mathrm{a}_{22}
\end{array}\right]} & {\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right] x} \\
{\left[\begin{array}{ll}
a_{31} & a_{32}
\end{array}\right]} & 1
\end{array}\right]
$$

Left 2X2 matrix is the Affine transformation matrix
Right 2*1 matrix is the Translation matrix
Bottom 1*2 is the Perspective matrix.

Image Integration, Stitching or Blending

a technique which modifies the image grey levels in the vicinity of a boundary to obtain a smooth transition between images by removing the seams and creating a blended image and determine how pixels in an overlapping area should be presented

Two main blending techniques are:

0.	Superimposing Method
0.	Averaging Technique

Superimposition method
Each pixel in the overlapped area takes its value from any one of the image

Averaging method
Simple Averaging Technique
Weighted Averaging Technique

- Simple Average Technique

 Simple averaging technique implies that pixel value in the overlapping region is the average of the corresponding pixel values in each of the two images$$
(x, y)=0.5 * f_{1}(x, y)+0.5 * f_{2}(x, y)
$$

If there are lots of intensity differences, this technique will not eliminate the seam effectively.
Result of simple Averaging

- Weighted Average Technique

Weighted average is given by:

$$
f(x, y)=w_{1}(x, y)^{*} f_{1}(x, y)+w_{2}(x, y)^{*} f_{2}(x, y)
$$

The weight function is a product of individual weight functions in the ' x ' and ' y ' directions

```
w(x,y) =w(x)*w(y)
```

Some of the common weighting functions are:
Mexican Hat
Function
Gaussian Function

Result of Weighted Averaging

KLT Corner Detector

No. of points $=205$

No. of points $=208$

Harris Corner Detector

No. of points $=209$

No. of points $=213$

Behavior of feature detectors in adverse imaging conditions
a Features may not be uniformly distributed throughout the image Large variation in the intensity at different parts of the images Leading to loss of information in the required region of overlap

Concept of a multi level Oct tree

No. of points $=1502$

Reduction of feature points

The KLT feature detector computes Eigen values $\left(\lambda_{1}, \lambda_{2}\right)$ of the auto correlation matrix. An interest point is declared when they are higher than a given threshold.
'Cornerness' is a single scalar value representing the characteristic of an interest point ' p '

$$
\mathrm{C}_{\mathrm{p}}=\left\|\lambda_{1}^{2}+\lambda_{2}^{2}\right\|
$$

C_{p} measure the resemblances between two repeated points p and q in two images
'Similarity' $S(p, q)$ is defined using the cornerness C_{p} and C_{q} :

$$
\mathrm{S}(\mathrm{p}, \mathrm{q})=\frac{\min \left(\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{q}}\right)}{\max \left(\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{q}}\right)}
$$

Reduction of Feature Points - Cornerness and Similarity measure

12
12
Fedrures reduction using Cornerness afid Similarity

66

99

Features reduction using threshold on Corner strength - 1

Feature reduction using threshold on Corner strength - 2

Feature reduction using threshold on Corner strength - 3

Scoring Algorithm

Evaluation of the score once a transformation H has been chosen as a potential candidate
4 families of scoring method
Tradeoffs between execution time and reliability of the scores

\star	Pixel Cross Correlation
$\&$	The Hausdorff matching
\star	The bottleneck matching
$\&$	Discrete Approximate Matching

Computation of Homography- Matching Images

Two Ways of Constructing Mosaic

- Sequantial Mosaicing

SEQUENTIAL MOSAICING

Two Ways of Constructing Mosaic

- Tree-based Mosaicina

LEVEL 1

TREE-BASED MOSAICING

LEVEL 1

TREE-BASED MOSAICING

LEVEL 2

TREE-BASED MOSAICING

RESULTS

Mosaic from Flight Mission

Mosaic - Examples

AREA COVERAGE: (1.035 km X 0.250 km)

AREA COVERAGE: (0.95 km X 0.237 km)

